DEPARTMENT OF PHYSICS

HOLY CROSS COLLEGE (Autonomous), Nagercoil-629004

Teaching Plan

Semester: I Course Name: MECHANICS Course code: PC2011

No of hours per week	No of credits	Total no of hours	Marks
4	4	60	100

Objective: To impart knowledge on basic aspects of dynamics, conservation laws, kinematics, collisions and elasticity.

COs	Upon completion of this course, students will be able to	PSO addressed	CL
CO – 1	understand and define the laws involved in mechanics	PSO1	U
CO – 2	apply conservation laws in collision experiments	PSO2	Ар
CO – 3	interpret the principles of gravitation and moment of inertia through theory and experiments	PSO3	Ap
CO – 4	analyze the fundamentals of center of mass and rocket motion	PSO2	An
CO – 5	- 5 apply pressure-velocity relation in fluid flow in the field of fluid dynamics		Ар

Modules

Credits: 4 Total contact hours: 60 (Including assignments and tests)

Unit	Section	Topics	Lecture	Learning	Pedagogy	Assessment/ Evaluation		
			hours	outcome		Evaluation		
Ι		Laws of Motion						
	1	Laws of conservation of energy, linear momentum and angular momentum – work energy	2	To understand the concept of conservation of energy.	Lecture Discussion with PPT illustration	Evaluation through short test Multiple choice		
	2	theorem work done by gravitational force –	2	To be able to derive the	Lecture discussion	questions		
		work done by spring force – potential energy – conservative and non conservative forces – potential energy curve		workdone by gravitational and spring force and distinguish conservative and non conservative forces	with illustration	Formative assessment I		
	3	Collision – Elastic and inelastic collision(Fundament al laws of impact) – Newton's law of impact – coefficient of restitution	3	To know the principles of collision	Lecture discussion			

	4	Impact of a smooth	3	To distinguish	Lecture	
		sphere on a fixed		between	discussion	
		plane – Direct		direct impact		
		impact between two		and oblique		
		smooth spheres –		impact		
		Oblique impact		between two		
		between two smooth		smooth		
		spheres –		spheres		
		Calculation of final		1		
		velocities of the				
		spheres – Loss of				
		K.E due to impact				
II		I	Dynamics	of Rigid Body		
	1	Moment of inertia –	2	To understand	Lecture	Short test
		Theorems of		the concept		
		perpendicular and		moment of	Illustration	Quiz
		parallel axes		inertia		
					-	
	2	M.I of a circular	3	To categorize	Lecture	Assignment
		ring, disc, solid		moment of	discussion	
		sphere, hollow		inertia of		Formative
		sphere and cylinder		different		assessment
		about all axes		objects.		
	3	Compound	4	To be able to	Lecture	
		pendulum – theory –		find the		
		equivalent simple		acceleration	Illustration	
		pendulum –		due to gravity		
		reversibility of		at a place		
		centers of oscillation				
		and suspension –				
		determination of g				
		and k				
III	1			vitation	-	
	1	Newton's law of	2	To recall the	Lecture	
		gravitation –		concept of	with PPT	
		Kepler's laws of		collision and	Illustration	Formative
		gravitation – G by		to recognize		assessment II
		Boy's method –		the impact of		assessment II
		Mass and density of		smooth		
		earth		spheres.		
	2	Acceleration due to	3	To understand	Question-	
		gravity – Variation		the variation	answer	
		of g with altitude,		of g with	session	
		depth and rotation of		altitude, depth		
		earth – Value of g at		and rotation of	Lecture	
		poles and equator		earth		

	3	Gravitational field – Gravitational potential – Gravitational potential due to spherical shell – Gravitational potential due to a solid sphere (inside	3	To understand the concept gravitational potential	Lecture with PPT Illustration	
IV		and outside)	Central I	Force Motion		
11	1	Angular velocity,	3	To acquire	Lecture	
	•	angular momentum	5	knowledge on	Leeture	
		and K.E of rotation –		angular	Discussion	Formative
		Torque and angular		velocity and		assessment II
		acceleration –		angular		
		Relation between		momentum.		
		them – Expression				
		for acceleration of a				
		body rolling down				
		an inclined plane				
		without slipping				
	2	Center of mass –	6	To understand	_	
		Velocity and		the concept	Lecture	
		acceleration of		centre of mass	D' '	
		centre of mass –			Discussion	
		Determination of motion of individual				
		particle – System of				
		variable mass. Rocket				
		motion-				
		Satellite				
V		S	tatics and]	Hydrodynamics		
	1	Friction-laws of	3	To have	Lecture	Short test
		friction-Angle of		practical	with PPT	
		friction-Cone of		knowledge		Formative
		friction – Centre of		on angle of		assessment
		gravity – Solid and		friction and		III
		hollow tetrahedron-		cone of		
		solid and hollow		friction		
		hemisphere				

2	Centre of pressure– vertical rectangular lamina – vertical triangular lamina	3	To understand the concept rectangular and triangular	Brain storming session. Lecture
			lamina.	Illustration
3	Hydrodynamics –	3	To be able to	Lecture
	Equation of		understand	with PPT
	continuity-Pitot's		the principles	
	tube and		in	Illustration
	Venturimeter –		hydrodynami	
	Euler's equation of		c s.	
	unidirectional flow -			
	Torricelli's theorem			
	– Bernoulli's			
	theorem and its			
	applications			

CO- Course Outcome; CL-Cognitive Level; R- Remember; U- Understand; Ap- Apply; C - Create.

Course Instructors: Dr.LeslyFathima & Sr.Sebastiammal

Semester: I Course Name: Allied Physics I Course code: AP2011

No of hours per week	No of credits	Total no of hours	Marks
4	4	60	100

Objectives

To understand the concept of strength of materials, viscous properties of liquids, heat transformation from one place to another, converting heat to do mechanical work and basic properties of light such as interference and diffraction.

СО	Upon completion of this course the students will be able to:	PSO addressed	CL
CO – 1	Understand the fundamental concepts of Physics.	PSO-1	U
CO – 2	Analyse the concepts and study the applications of Thermodynamics, material properties heat and optics.	PSO-2	An
CO – 3	Apply their depth knowledge of Physics in day today life.	PSO-3	Ар
CO – 4	Develop their knowledge and carry out the practical by applying these concepts	PSO-5	R

Unit	Section	Topics	Lecture hours	Learning outcome	Pedagogy	Assessment/ Evaluation
Ι		Properties of M	latter			
	1	Young's modulus – Rigidity modulus – Bulk modulus – Poisson's ratio (definition alone)	2	To understand the basic concepts of Young's modulus and its definition	Illustration and lecture	Evaluation through: quiz, short questions
		Bending of beams – Expression for bending moment	1	To study the Bending of beams and define Expression for bending moment	Illustration and theoretical derivation	Multiple choice, questions ,
	2	Determination of Young' modulus – uniform and non uniform bending. Expression for Couple per unit twist	2	To determine uniform and non- uniform bending and study couple per unit twist	Illustration, theoretical derivation and Practical	Deriving theoretical Formulas Problem
	3	Work done in twisting a wire – Torsional oscillations of a body– Rigidity modulus of a wire and M.I. of a disc by torsion pendulum	3	To understand working of torsion pendulum	Lecture and theoretical derivation	solving Formative assessment
II		Viscosity				
	1	Viscosity – Viscous force – Co- efficient of viscosity – Units and dimensions		To understand the basic concepts of viscosity and study its units	Illustration, Theoretical formulation Problem Solving	Evaluation through: quiz, short test
	2	Poiseuille's formula for co- efficient of viscosity of a liquid – Determination of co- efficient of viscosity using burette and comparison of Viscosities.		To determine Poiseuille's formula and determine the co- efficient	Lecture , Theoretical formulation Practical demonstration	Assignment on applications. Problem
	3	Bernoulli's theorem – Statemen and proof – Venturimeter – Pitot tube.	2	To understand the concept of venturimeter and Pitot tube.	Lecture , Illustration, Theoritical formulation Practical	Solving Formative assessment
III		Conduction, Convection				
	1	Specific heat capacity of solids and liquids – Dulong and Pettit's law	2	To understand the basic concepts of specific heat capacity	Illustration and lecture	Evaluation through: quiz, short questions

	2 3	Newton's law of cooling – Specific heat capacity of a liquid by cooling Thermal conduction–Coefficient of thermal conductivity by Lee's disc method.	2	To use the law of Newtons law of cooling to find specific capacity of liquid To understand the basic concepts of conduction mode of heat transfer through	Illustration and theoretical derivation Illustration, theoretical derivation and Demonstration	Multiple choice, questions, Deriving theoretical
	4	Convection process – Lapse rate – Greenhouse effect	1	To define convection mode of heat transfer and study its application	Illustration and lecture	formulas Formative assessment
	5	Black body radiation – Planck's radiation law – Rayleigh Jean's law, Wien's displacement law – Stefan's law of radiation.	2	To deduce laws related to heat transfer through radiation	Illustration, theoretical derivation and Demonstration	
IV		Thermodynar				
	1	Zeroth and First Law of thermodynamics – Second law of thermodynamics	2	To understand the basic concepts of laws of thermodynamics	Lecture, Demonstration, theoretical formulation	Evaluation through: quiz, short questions
	2	Carnot's engine and Carnot's cycle – Efficiency of a Carnot's engine	3	To analyse the various aspects of Carnot engine	Lecture, Demonstration, theoretical formulation	Multiple choice, questions, Deriving
	3	Entropy – Change in entropy in reversible and irreversible process – Change in entropy of a perfect gas – Change in entropy when ice is converted into steam.	3	To understand the concept of entropy and its applications	Lecture, Demonstration, theoretical formulation	theoretical formulas Formative assessment
V		Optics				
	1	Interference – Conditions for interference maxima and minima – Air wedge – Thickness of a thin wire – Newton's rings – Determination of wavelength using Newton's rings.	3	To understand the basic concepts of interference phenomena and its application	Illustration, Theoretical formulation, Demonstration	Evaluation through: quiz, Deriving theoretical formulas
	2	Diffraction – Difference between diffraction and interference –	2	To understand the basic concepts of	Lecture, Demonstration,	

	Theory of transmission grating		diffraction	Theoretical	Assignment
	 Normal incidence 		phenomena and	formulation	on
			its application		applications
3	Optical activity - Biot's laws	3	To understand the	Lecture,	
	_		basic concepts of	Demonstration,	Formative
	Specific rotatory power				
	-				
	Determination of		optical activity	Theoretical	assessment
	specific				
	rotatory power using Laurent's		phenomena and	formulation	
	half shadepolarimeter.		its application		

CO- Course Outcome; CL-Cognitive Level; R- Remember; U- Understand; Ap- Apply; C - Create.

Course Instructors: Ms.Aji Udahya

Semester I Non Major Elective Course - I Course Name: Physics in Everyday Life - I Course Code: PNM201

No. of hours per week	No of credits	Total no of hours	Marks
2	2	30	100

Objectives

- 1. To introduce the basic concepts in physics and their applications in everyday life.
- 2. To understand the physics concept applied in day to day life situations.

СО	Upon completion of this course, students will be able to:	PSO's	CL
		addresed	
CO – 1	understand their knowledge of basic scientific principles	PSO1	U
	and fundamental concepts in physics.		
CO – 2	recall the various phenomena of sound waves applied in	PSO2	R
	day today life		
CO – 3	understand the basic laws of physics and different forces	PSO1	Ар
	involved in nature.		
CO – 4	explain the Physics concepts behind sports	PSO3	Е
CO – 5	categorize different characteristic nature of light and its	PSO1	С
	properties like refraction, reflection and diffraction.		

Total contact hours: 30 (Including lectures, assignments and tests)

Unit	Module	Topics	Lecture hours	Learning outcome	redago	Assessment/ Evaluation
I		Properties of 1		leat and Thermod	gy lynamics	
		Introduction- Elasticity- Elastic behaviour of materials- Elastic energy- Elastic and Plastic Deformation- Polymers and elastomers- Application of Elastic behaviour of materials	1	To understand the fundamental concepts in elastic behaviour of materials	Lecture, PPT	Quiz, test, Formative assessment (I)
	2	Surface Tension -Concept behind Surface Tension- Examples of surface Tension , Capillary action- Experiment- Examples of capillary action	2	To apply Surface tension effects in day today lie situation.	Lecture, Demonstra tion	
	3	Viscosity - definition - Applications of Viscosity.	1	To understand the concept viscosity	Lecture	

II			S	ound		
	1	Introduction- frequency spectrum of Sound waves - The Human voice-How does the ear hears?-	1	To understand the basic properties of sound	Lecture, Demons- tration	
	2	Amazing Abilities of Sound Basic characteristics of sound-	1	To be able to understand the basic characteristics of sound	Lecture,	Quiz test,
	3	Reflection of Sound-echo- Interference -Application of reflection of sound wave	1	To understand the fundamental concept of reflection	Lecture	Formative assessment
	4	Ultra sound: Properties and applications of ultrasound-Applications of sound in human life.	1	To understand the applications of ultrasonic	Lecture, PPT	
III			Me	chanics		
	1	Introduction- terms used in mechanics- Centripetal	1	To understand Centripetal and	Lecture	Assignments
		and centrifugal forces-		centrifugal forces		Assignments,

		Contact and non contact forces				
	2	Friction and its types- Newton's laws of motion- gravity	2	To understand friction and its types	Lecture, PPT	Formative
	3	Mass and weight- Mechanics in everyday life.	1	To understand the relation between mass and weight and apply the mechanics in day to day life	Lecture, PPT	
IV		Bior	nechanio	cs in Sports		
	1	Forces and torques in Bio Mechanics- Centre of gravity	1	To understand the forces, normal reaction, friction		
	2	Physics of walking – Physics of cycling – Physics of long jump	1		Lecture, PPT	Formative assessment
	3	Physics of swimming, volleyball and basketball	2	To understand the forces, normal reaction, friction,	Lecture, PPT	
V			Renewa	able Energy		

1	Solar power – Applications - Wind power and applications -	2	Understand the natural power	Lecture, PPT	
	Applications - Hydroelectric power and its uses				
2	Biogas plant and its	1	To use the biogas	Lecture,	Quiz,
	advantages -		resources in day	PPT	Assignments
3	Advantages and	1	To understand the	Lecture,	
	disadvantages of renewable energy sources.		pros and cons of these resources	PPT	
	fone waste energy sources.				

CO- Course Outcome; CL-Cognitive Level; R- Remember; U- Understand; Ap- Apply; C - Create.

Course Instructor: S.J.Jenepha Mary

Semester II Course Name : PROPERTIES OF MATTER AND SOUND Course code: PC2021

No. of Hours per Week	Credits	Total No. of Hours	Marks
4	4	60	100

Objective

To expose students to the fundamentals of properties of matter and sound.

Course Outcomes

СО	Upon completion of this course the students will be able to:	PSO addressed	CL
CO- 1	identify the materials suitable for construction of buildings, based on the moduli of elasticity.	PSO-4	Ар
CO- 2	paraphrase the properties of liquids and its determination.	PSO-1	U
CO- 3	analyze the physics of sound and its applications	PSO-2	An
CO- 4	integrate the concepts of acoustic comfort and better understanding of the theories used in building acoustics	PSO-3	Ар

Modules Credits: 4 Total contact hours: 60 (Including assignments and tests)

Unit	Section	Topics	Lecture hours	Learning outcome	Pedagogy	Assessment/ Evaluation
Ι	Elasticit	y				
	1	Elasticity Hooke's	2	To understand	Lecture	Evaluation
		law – Elastic moduli		the concept		through
		– Poisson's ratio –		elasticity and		short test

	2 3	Beams – Bending of beams – Expression for bending moment – Cantilever- Theory of uniform and non – Uniform bending - Determination of Young's modulus Koenig's method – Torsion of a body –	2 3	bending of beams To be able to determine the Young's modulus of the material To acquire knowledge on	Discussion with PPT illustration Lecture discussion with illustration Lecture discussion	Multiple choice questions Formative assessment I
		Expression for couple per unit twist – Work done in twisting a wire		Work done in twisting a wire		
	4	Torsional oscillations of a body - Rigidity modulus by dynamic torsion method (Torsional pendulum) and static torsion method	2	To be able to distinguish between dynamic torsion method and static torsion method	Lecture discussion	
II	Surface	Tension				
	1	Surface tension – definition – Molecular forces – Explanation of surface tension on kinetic theory – Surface energy	3	To understand the concept of surface tension according to kinetic theory	Lecture Illustration	Short test Quiz Assignment Formative
	2	Work done in increasing the area of a surface – Excess pressure inside a curved liquid surface – Excess pressure inside a spherical	3	To determine the excess pressure inside a spherical and cylindrical drops and bubbles	Lecture discussion	assessment I

		and cylindrical drops and bubbles				
	3	Drop weight method - Angle of contact- Quincke's method- variation of surface tension with temperature- Experimental determination-	3	To evaluate the principle of surface tension in liquids and understand it by practical experiments.	Lecture Illustration	
		Jaegar's method				
III	Viscosity	7				
	1	Viscosity – Co efficient of viscosity – Streamlined and turbulent motion – Critical velocity	3	To have practical knowledge on determining the coefficient of viscosity of a liquid.	Lecture with PPT Illustration	Class test Quiz Formative
	2	Rate of flow of liquid in a capillary tube – Poiseuille's formula – Viscosity of highly viscous liquid	4	To understand the concept of pressure and thrust.	Question- answer session Lecture	assessment II
	3	Terminal velocity - Stoke's method - Ostwald Viscometer - Viscosity of gas- Mayer's formula- Rankine 's method	3	To evaluate Stoke's formula and apply it in experiment to understand the viscous force of a liquid.		
IV	Sound	<u> </u>	<u> </u>		1	1
	1	Simple harmonic motion – Differential equation of motion	3	To derive the solution of the differential	Lecture Discussion	Short test

	2	executing S.H.M. – Solution of the differential equation of motion Composition of two S.H.M. along the same direction and at right angles – Lissajous figure – Free, damped and forced vibration	3	equation for a simple harmonic motion To distinguish between Free, damped and forced vibration	Lecture Discussion	Quiz Formative assessment II
	3	Frequency of vibrating string- Melde's experiment and verification of the laws of transverse vibration of a string- Sonometer – Loudness level- Sound Intensity measurement	3	To acquire skills to do experiments by sonometer and Melde's string.		
V	Ultrason	ics and Acoustics	I	L		
	1	Ultrasonics – Production – Piezoelectric crystal method – Magnetostriction method – Properties and Applications	3	To compare the methods of ultrasonic production.	Lecture with PPT	Class test Formative assessment III
	2	Acoustics of building – Reverberation- Sabine's Reverberation formula (No derivation) - Factors affecting acoustics	5	To classify sound and to examine the architectural acoustics	Brain storming session. Lecture Illustration	

of building- Sound		
distribution in an		
auditorium-		
Requisites for good		
acoustics		

PO- Program outcome; LO – Learning outcome; Cognitive Level U – Understand; Ap- Apply, An- Analyze;

Course instructors: Dr.A.Lesly Fathima and Sr.S.Sebastianmal

Semester: IIName of the Course: Allied Physics IISubject code: AP2021

No. of hours per week	No. of credits	Total no. of hours	Marks
4	4	60	100

Objectives

To understand the concept of strength of materials, viscous properties of liquids, heat transformation from one place to another, converting heat to do mechanical work and basic properties of light such as interference and diffraction.

СО	Upon completion of this course the students will be able to:	PSO addressed	CL
CO 1	Acquire knowledge on elementary ideas of electricity and magnetism, electronics, optics and nuclear physics.	PSO-1	U
CO 2	Analyze the concepts and study their applications in the field of electricity and magnetism, electronics, optics and nuclear physics.	PSO-2	An
CO 3	Apply their depth knowledge of Physics in day today life.	PSO-3	Ар
CO 4	Develop their knowledge and carry out the practical by applying these concepts	PSO-5	Ap

Unit	Module	Topics	Lecture hours	Learning outcome	Pedagogy	Assessment / Evaluation
Ι	Quantun	n Mechanics and Relativity				
	1	Wave mechanics – expression for group velocity – Davison Germer's experiment – Heisenberg's uncertainty principle – basic postulates of wave mechanics – time dependent form of Schrodinger equation – properties of wave function.	2	To understand the basic concepts of wave mechanics	Illustration and lecture	Evaluation through: quiz, short questions
	2	Heisenberg's uncertainty principle – basic postulates of wave mechanics – time dependent form of Schrodinger equation – properties of wave function.	2	To study the basic postulates of wave mechanics and derive Schrodinger equation	Illustration and theoretical derivation	- Multiple choice, questions , Deriving theoretical
	3	Relativity – frame of reference – Newtonian relativity – Galilean transformation equations.	2	To understand Relativity and frame of reference	Illustration, theoretical derivation and Practical	Formulas Problem solving
	4	Special theory of relativity – Lorentz transformation equations.	3	To derive Lorentz transformation equations.	Lecture and theoretical derivation	Formative assessment
II	Nuclear I	Physics				
	1	Nuclear constituents - size - mass - spin and charge - binding energy - binding energy curve	3	To understand the basic concepts of nuclear physics and study its units	Illustration, Theoretical formulation, Problem Solving	Evaluation through: quiz, short test
	2	Nuclear fission - chain reaction - nuclear reactor - radioactive disintegration	3	To determine nuclear fission	Lecture, Theoretical formulation	Assignment on applications

	3	Half life period - radiation hazards.	2	andradioactivedisintegrationTo understand thecausesofradiation hazards	Lecture, Illustration,	Formative assessment
III	Electrici	ty & Magnetism	L	•		
	1	Electric curent - current density - Ohm's law - Electrical conductivity - Kirchhoff's law	2	To understand the basic concepts of current and laws	Illustration and lecture	Evaluation through: quiz,
	2	Wheatstone's bridge - condition for balance - potentiometer - calibration of voltmeter and ammeter.	2	Tostudythebasicofpotentiometer,voltmeterandammeter	Illustration and theoretical derivation. Practical	short questions, Multiple choice, questions,
	3	Electromagnetic induction - laws of electromagnetic induction - Faraday's law - Lenz law	2	To understand the basic concepts of electromagnetic induction through experiment	Illustration, theoretical derivation and Demonstration	Deriving theoretical formulas
	4	Flemings right hand rule - self- inductance - mutual induction - coefficient of coupling.	2	To define convection mode of heat transfer and study its application	Illustration and lecture	Formative assessment
IV	Electron	nics				
	1	Formation of p-n junction diode – forward and reverse biasing of a junction diode	2	To understand the basic concepts of electronics	Lecture, Demonstration, theoretical formulation	Evaluation through: quiz, short questions
	2	Zener diode - characteristics of the Zener diode – diode as a half wave and full wave rectifiers.	2	To analyse the various aspects of zener diode	Lecture, Demonstration, theoretical formulation	Multiple choice, questions, Deriving
	3	Bipolar junction transistor –	2 21	To understand the concept of	Lecture, Demonstration,	theoretical

	4	junction transistor – CE characteristics of a transistor Field effect transistor – drain characteristics of an n channel JFET.	2	Bipolar junction transistor To understand the concept of Field effect transistor	theoretical formulation Lecture, Demonstration, theoretical formulation	formulas Formative assessment
V	Digital H	Electronics				
	1	Digital logic gates – AND – OR – NOT gate – NAND and NOR as universal gates – integrated circuit – EX-OR gate	3	To understand the basic concepts of logic gates	Illustration, Theoretical formulation, Demonstration	Evaluation through: quiz, Deriving theoretical
	2	Boolean algebra– half adder – full adder – half subtractor.	2	To understand the basic concepts of Boolean Algebra	Lecture, Demonstration, Theoretical formulation	formulas Assignment on applications
	3	Decimal system – Binary system –conversion – binary addition – binary subtraction using 2s complement – binary multiplication – binary division.	3	To understand the number system and binary operations	Lecture, Demonstration, Theoretical formulation	Formative assessment

PO- Program outcome; LO – Learning outcome; Cognitive Level U – Understand; Ap- Apply, An- Analyze;

Course Instructor: Ms.P. Aji Udhaya &Sr.S.Sebastianmal

Course Code: PNM202

No. of hours per week	No. of credits	Total no of hours	Marks
2	2	30	100

Objectives

- 1. To provide basic knowledge on the concepts of light, Electromagnetism and Electronics along with some applications.
- 2. To explain the wonders in universe using the principles of physics

. Course Outcomes

СО	Upon completion of this course, students will be able to:	CL
CO - 1	understand the principle and working of simple devices used in day to day life.	U
CO – 2	identify the symbols used for various electronic components and infer the electronic tools.	R
CO – 3	distinguish different heavenly bodies (star, planet, comets, galaxies)	R
CO - 4	recall various applications of physics concepts in everyday life	K

Teaching Plan

Total contact hours: 30 (Including lectures, assignments and tests)

Unit	Module	1	Lecture hours	Learning outcome	Pedagog y	Assessm ent/ Evaluat ion
Ι			Light		1	-
	1	Introduction - Nature and properties of light - Reflection - Colours of light - Colours of objects- Reflection in everyday life Refraction - Dispersion – Rainbow formation- Refraction in everyday life	1	To understand the fundamental concepts of light To understand the fundamental phenomenon of light	Lecture, PPT Lecture , Demon strati on	Quiz test, Formative assessme nt
	3	Laser: principle and applications - Fiber optics and its applications - Applications of light in day to day life	1	To understand the principles and applications of	Lecture	

				Laser and fiber optics in day to day life		
II		Electroma	agnetic R	Radiation		
	1	Introduction- Properties of Electromagnetic waves - EM Spectrum- Radio sub spectrum	1	To understand the basic properties of electromagnet ic radiation	Lecture , Demon strati on	Quiz test, Formative assessme nt
	2	Cell phones, Microwaves - Microwave oven and sensor, Terahertz radiation and its applications	2	To apply electromagnet ic radiations in electrical and electronic appliances	Lecture , Demon strati on	
	3	Infra red rays in everyday life – Infra Red and microwaves - comparison - visible light waves - UV rays and its applications	1	To understand and apply the uses of microwave, infrared and visible light in day to day lie	Lecture	
III		Elect	romagne		I	I
	1	Introduction - Magnetic materials - Magnetic Field in and around a bar Magnet, Magnetic Fields in and around Horseshoe magnet, Magnetic lines of force	2	To understand Magnetic Field and magnetic force	Lecture	Quiz test, Forma tive
	2	Electric charge - Ohm's Law - Practical Applications of Ohm's Law in Daily Life	1	To understand Ohm's Law and the applications of Ohm's law	Lectu re, PPT	assess ment (II)
	3	Electromagnetism- Applications of electricity and magnetism: Credit card machine, Use of electromagnetism in daily life.	1	To apply the applications of electricity and magnetism in digital technology		
IV	Basic l	Electronics		<u>l</u>	1	I
	1	Introduction - Electronic components - Electronic tools	1	To understand and apply the basic electronic components	Lecture	Quiz test, Formativ e assessme
				-		

					and electroni tools	c	nt (II)
	2	Semiconductors and integrated circuits - Application of electronic devices	1		To understan Ohm's Lav and th applications o Ohm's law	w PPT e	
	3	Electromagnetism- Applications of electricity and magnetism: Credit card machine, Use of electromagnetism in daily life.	2		To apply th applications of electricity an magnetism i digital technology	of d	
V	Space	Physics Introduction - The big bang theory - Stars-Star system, multiple star, supernova, black hole - solar system	1		understand stars and the ar system	Lecture	Quiz test, Formativ e assessme nt (II)
	2	Terrestrial and Jovian planets - Asteroids- Meteoroids - Meteors - Comets	2			Lecture	
	3	Galaxy - Eclipse: solar and lunar - seasons	1	To the cha		Lecture	

Semester: III Course Name: Heat and Thermodynamics Course Code: PC2031

Hours /Week	Credits	Total Hours	Marks
4	4	60	100

Objectives

- 1. To understand the phenomena connected with various units of measurement of temperature, knowing the concept of specific heat capacities of matter and transmission ofheat.
- 2. To introduce the concept of lowering the temperature, liquefying gases and process of making heat to do mechanicalwork.

	Course Outcomes	Γ	
COs	Upon completion of this course, students will be able to:	PSO addressed	CL
CO-1	understand experimental methods to determine the transmission of heat.	PSO - 4	U
CO-2	analyze the work and heat interactions associated with a prescribed process path and to perform a analysis of a flow system	PSO - 1	An
CO-3	understandthe basic concepts of thermodynamics like system,properties, equilibrium, pressure, specificvolume,temperature and the laws of thermodynamics	PSO - 4	U
CO-4	evaluate entropy changes in a wide range of processes and determine the reversibility or irreversibility of a process fromsuch calculations.	PSO - 3	An
CO-5	analyze Maxwell's thermo dynamical relations and their applications	PSO - 5	Ε

Teaching Plan

Total contact hours:	60	(Including lectures	assignment	s and Tests)
Total contact nours.	υu	(Including feetures	, assignment	s and rests

Unit	Module	•	Lectur e hours	Learning outcome	Pedagog y	Assessment/ Evaluation			
Ι	Thermometry and Calorimetry								
	1	Platinum resistance thermometer - Calendar and Griffith's bridge	1	Describe the theory behind different thermomet ers	Lectur e discus sion PPT	Multiple Choice Questions			
	2	Thermoelectric effect – Seebeck effect – Thermoelectric thermometers- International temperature scale – Thermistor-	2	Able to explain thermoelecti c effects	Lecture demons tration PPT	Quiz,			
		Specific heat capacity of Solids – Regnault's method of mixtures(solid) – specific heat capacity of liquids – Callendar and Barnes method.	3	Able to determin e the specific heat capacity of solids and liquids	Lecture demons trati on PPT	Formative Assessment I			
	4	Specific heat capacity of gases – Cp and Cv – Meyer's relation – Cv by Joly's differential steam calorimeter method – Cp by Regnault's method.	3	Able to determine the specific heat capacity of gasses.	PPT Lectur e discus sion	Assignment			

II		Low Ten	peratu	ire Physics		
	1	Joule - Kelvin effect - Liquefaction of Air-Linde's Process –liquefaction of hydrogen - liquefaction of helium-Kammerling - Onne's method	3	Describi ng the process of liquefacti on of gases by various methods	Lectur e discus sion PPT	Formative Assessment I &II
	2	Helium I and II - Lambda point - production of low temperatures - adiabatic demagnetization	3	Explain about the production of low temperatur es	Lecture demons trati on PPT	Multiple choice questions
	3	Practical applications of low temperature - refrigerators and air- conditioning machines - super fluidity - application of super fluidity.	3	Discuss about fluidity, low temperature and applications based on it	Group discussio n, PPT	Quiz
III	Transn	nission of Heat				
	1	Conduction – coefficient of thermal conductivity – Rectilinear flow of heat along a bar	2	Explain the conduction process and rectilinear heat flow.	Lecture discussio n, PPT	Multiple choice questions
	2	convection – lapse rate – Stability of the atmosphere – Newton's law of cooling – determination of specific heat capacity of liquid	3	Discuss the convection process of heat transfer.	Lecture discussi on & Demon strat ion, PPT	Formative Assessment I &II

	3	Radiation - black body – Kirchhoff's law – Stefan – Boltzmann law- solar constant – water flowpyroheliometer.	2	Describe the process of radiation and laws associated with it.	PPT Lecture discussi on	Short Test Quiz
	4	Energy distribution in black body spectrum - Wien's law – Rayleigh Jean's law– Planck's law	2	Comparing the theoretical and experimental results of energy distribution in black body.	Group discussio n, PPT	Assignment
IV			Theory	of Gases		
	1	Kinetic Theory of gases- assumptions - Molecular collisions – mean free path – expression for mean free path	2	Able to explain the motion of gas molecules	Lecture discussio n, PPT	Multiple choice questions
	2	Transport phenomenon – Brownian motion and its features - expression for viscosity, Diffusion and thermal conductivity of gas.	4	Describe the movement of molecules into different layers thus understanding the transport of gas	Lecture discussi on & Demon strat ion, PPT	Formative Assessment I
	3	Experimental verification -Vander Waals' equation of state - Determination of Vander Waals' constant - Relation between Vander Waals' constant and critical constants.	3	Explain the correction in Ideal gas equation and finding the constants of correction and their relations	Lecture demons tration PPT	Short Quiz
V		Thermodynamics		1	1	

1	Zeroth and first law of thermodynamics – reversible and irreversible processes – isothermal process-adiabatic process-gas equation during adiabatic process - work done during adiabatic and isothermal process	3	Discuss the zeroth law and first law of thermodyna modynamics	Lecture discussio n, PPT	Multiple Choice Questions
2	second law of thermodynamics – Carnot's engine – its efficiency. Entropy – change of entropy in reversible and irreversible processes – temperature – entropy diagrams – physical significance of entropy - change of entropy when ice converted into steam	2	Discuss the law of thermodyna modynamics and entropy concept	Lecture discussio n, PPT	Quiz,
3	third law of thermodynamics – Extensive and Intensive thermodynamic variables – distinction between them Maxwell thermodynamical relations – derivation and application - Clausius - Clapeyron equation and specific heat relation	4	Analyze and study the applications maxwells relation	Group discussio n, PPT	Formative Assessment II

Course Instructor: Dr.M.Abila Jeba Queen

Semester :III

Course Name : Non Conventional Energy Sources -Elective – I(a)

Course Code : PC2032

No. of hours per week	No. of credits	Total No. of hours	Marks
4	4	60	100

Learning Objectives

- 1. To provide an understanding of the present energy crisis and various available energy sources.
- 2. To make the students to understand the present day crisis of need for conserving energy and their alternatives.

Course Outcome

COs	Upon completion of this course, students will be able to:	PSO addressed	CL
CO- 1	Apply the solar energy in various sectors. (industry, agriculture and domestic purposes)	PSO-3	Ар
CO- 2	Explain the basic principles of wind energy conversion, various Biomass conversion Processes and its classification.	PSO- 1	U
CO- 3	Discuss the geothermal energy resources and chemical energy resources. (fuel cells)	PSO-2	An
CO- 4	Solve the present and future energy crisis.	PSO-8	С

Modules

Unit	Section	Topics	Lecture	Learning	Pedagogy	Assessment/
		_	hours	outcome		Evaluation
Ι	Introduc	tion to Energy Sources	-			
	1	World's reserve of Commercial	3	To understand	Illustration and	Evaluati
		energy sources and their		the energy	lecture	on
		availability		resources		through:
				available in		quiz, short
				Word		questions
	2	India's production and reserves	2	To understand	Illustration and	
				the	lecture	
				availability of		
				energy		
				resources in		
				India		
	3	Conventional and non-	2	To compare	Illustration and	Formative
		conventional sources of energy,		Conventional	lecture	assessment
		comparison		and non-		
		_		conventional		

				sources of		
				energy		
	4	Coal- Oil and natural gas – applications - merits and demerits.	2	To know the merits and demerits of fossil fuels	Illustration and lecture	
II	Solar Th	ermal Energy				
	1	Solar constant -Solar spectrum	0.5	To understand the phenomena of solar activity	Illustration, demonstration and lecture	Evaluation through: quiz, Multiple choice, question s,
						Formative assessment
	2	Solar radiations outside earth's atmosphere —at the earth surface- on tilted surfaces	2.5	To understand the basic concepts of solar radiation towards earth	Illustration, demonstration and lecture	
	3	Solar Radiation geometry	0.5	To understand the different terms with solar radiation geometry	Illustration, lecture and Demonstration	
	4	Basic Principles of Liquid flat plate collector	1	To understand the principles of solar collector	lecture and Demonstration	
	5	Materials for flat plate collector -Construction and working	1.5	To explain the construction and working of Flat plate collector	Group Discussion	Multiple choice, question s,
	6	Solar distillation- Solar drying- Solar cooker (box type)-Solar water heating systems – Swimming pool heating.	3	To design the various Pollution free energy resources	Lecture with ppt, Group Discussion	Exhibiting Models, Formative assessment
III	Photovo	Itaic Systems				

	1	Introduction-Photovoltaic principle-Basic Silicon Solar cell- Power output and conversion efficiency	3	To understand the basic principle of Solar cell and study its efficiency	Lecture with ppt, Group Discussion	Evaluation through: quiz, Assignments
						Multiple choice questions
						Descriptive answers
						Formative assessment
	2	Limitation to photovoltaic efficiency-Basic photovoltaic system for power generation- Advantages and disadvantages	3	Able to utilize the solar energy for generating power	Lecture discussion	
	3	Types of solar cells	1	Able to discuss about the various types of solar cell	Lecture discussion	
	4	Application of solar photovoltaic systems - PV Powered fan – PV powered area - lighting system – A Hybrid System.	3	Apply the solar energy in various sectors	Lecture discussion	
IV	Biomass	Energy		1		
	1	Introduction-Biomass classification- Photosynthesis - Biomass conversion technologies-Bio-gas generation-Factors affecting bio-digestion	3			Evaluation through: quiz Assignments
			22	To understand the fundamentals of Biomass conversion processes& devices	Lecture discussion	Short questions Descriptive answers

						Formative
	2	Working of biogas plant- floating and fixed dome type plant -advantages and disadvantage	3	To bring awareness from a technical point of view of Bio gas plants	Lecture, Illustration, Group discussion	assessment
	3	Bio-gas from plant wastes	1	To understand and apply the concept of production of bio-gas from plant wastes	Lecture, Illustration, Group discussion	
	4	Methods for obtaining energy from biomass. Advantage & disadvantages of biomass as energy source	2	To discuss about the generation of biogas from biomass	Lecture discussion	
V	Wind E	nergy and Other Energy Sources				
	1	Wind Energy Conversion- Classification and description of wind machines, wind energy collectors-Energy storage	3	To understand the basic concepts of WECS system	Illustration, lecture, Demonstration	Evaluation through: quiz, Assignments on applications Formative
	2	Energy from Oceans and Chemical energy resources- Ocean thermal energy conversion-tidal power, advantages and limitations of tidal power generation-Energy and power from waves- wave energy conversion devices	3	To understandthe basic conceptsof OTEC and Wave energy	Lecture, Demonstration,	assessment
	3	Fuel cells- and application of fuel cells- batteries- advantages of battery for bulk energy storage- Hydrogen as alternative	3	To understandthe basic conceptsof Chemical	Lecture, Demonstration,	
	4	fuel for motor vehicles.		energy		

CO-Course Outcome; CL-Cognitive Level; R- Remember; U- Understand; Ap-Apply; An-Analyze; C - Create.

Course Instructors: Dr. R. Krishna Priya& Ms. P. AjiUdhaya

Semester III

Course Name : Allied Physics I for Chemistry

Course code : AP2031

No of hours per week	No of credits	Total no of hours	Marks
4	4	60	100

Learning Objectives

- 1. To understand the concept of strength of materials, viscous properties of Liquids, heat transformation from one place to another, converting heat to do mechanical work.
- 2. To understand basic properties of light such as interference and diffraction.

COs	Upon completion of this course students will be able to:	PSO addressed	CL
CO-1	Understand to know, various modulus involved in the materials, flow of liquids due to viscous forces, transmission of heat due to process of conduction, convection and radiation and various laws involved in heat transformation, various thermodynamic laws and.	PSO-1	U
CO -2	Analyze the concepts and study the concept of entropy, and the phenomenon like interference and diffraction, optical activity of liquids and its uses.	PSO -3	An
CO- 3	Apply their depth knowledge of Physics in day today life.	PSO -2	Ар
CO- 4	Develop their knowledge and carry out the practical by applying these concepts	PSO -4	R

Unit	Section	Topics	Lecture hours	Learning outcome	Pedagogy	Assessment/ Evaluation
Ι	Properties of Matter					

	1	Young's modulus – Rigidity modulus – Bulk modulus – Poisson's ratio (definition alone)	2	To understand the basic conceptsof Young's modulus and itsdefinition	Illustration and lecture	Evaluation through: quiz, short questions
		Bending of beams – Expression for bending moment	1	To study the Bending of beams and define Expressionfor bending moment	Illustration and theoretical derivation	Multiple choice, questions,
	2	Determination of Young' modulus – uniform and non uniform bending. Expression for Couple per unit twist	3	To determine uniform and non- uniform bending and study couple per unit twist	Illustration, theoretical derivation and Practical	Deriving theoretical Formulas Problem
	3	Work done in twisting a wire – Torsional oscillations of a body– Rigidity modulus of a wire and M.I. of a disc by torsion pendulum	3	To understand working oftorsion pendulum	Lecture and theoretical derivation	solving Formative assessment
II		Conduction in s	solids			
	1	Conduction in sThermal conductivity – Lee's discmethod – Relation betweenthermalandelectricalconductivities-Franz law	3	To understand the basic concepts of conduction phenomena and derive related laws	Illustration, theoretical derivation and lecture	Evaluation through: quiz, short questions
	2	Convection: Newton's law of cooling – Determination of specific heat capacity of liquid		To understand the basic concepts of convection phenomena and derive related laws	Illustration and theoretical derivation	Multiple choice, questions,
	3	Radiation: Distribution of energy in the spectrum of black body - Results.		To understand the basic concepts of radiation phenomena and derive related	Illustration, theoretical derivation and Demonstration	Deriving theoretical formulas Formative
Ì	1			laws		гоппануе

III	1	Viscosity – Viscous force – Co-	3	To understand the	Illustration,	Evaluation
•••	1	efficient of viscosity – Units and		basic concepts of	Theoretical	through:
		dimensions		viscosity and	formulation	quiz, short
				study its units	Problem	questions
					Solving	
	2	Poiseuille's formula for co-	3	To determine	Lecture,	
		efficient of viscosity of a liquid –		Poiseuille's	Theoretical	
		Determination of co- efficient of		formula and determine the co-	formulation	Multiple
		viscosity using burette and		efficient	Practical	choice,
	3	comparison of Viscosities. Bernoulli's theorem – Statemen	3	To understand the	demonstration	questions,
	3		5	concept of	Lecture, Illustration,	Deriving
		and proof – Venturimeter –		venturimeter and	Theoritical	theoretical
		Pitot tube.		Pitottube.	formulation	formulas
					Practical	F
						Formative
IV		Thermodynai	mics			assessment
1 V						
	1	Zeroth and First Law of	2	To understand the	Lecture,	Evaluation
		thermodynamics – Second lawof		basic concepts of laws of	Demonstration,	through:
		thermodynamics		laws of thermodynamics	theoretical formulation	quiz, short questions
	2	Carnot's engine and Carnot's	3	To analyse the	Lecture,	Multiple
	2	cycle – Efficiency of a Carnot's	5	various aspects of	Demonstration,	choice,
		engine		Carnot engine	theoretical	questions,
				6	formulation	Deriving
	3	Entropy – Change in entropy in	3	To understand the	Lecture,	theoretical
		reversible and irreversible		concept of	Demonstration,	formulas
		process – Change in entropy of a		entropy and its	theoretical	Formative
		perfect gas – Change in entropy		applications	formulation	assessment
		when ice is converted into steam.				
V		Optics	•	I		
	1	Interference – Conditions for	3	To understand the	Illustration,	Evaluation
		interference maxima and minima		basic concepts of	Theoretical	through:
		– Air wedge – Thickness of a		interference	formulation,	quiz,
		thin wire – Newton's rings –		phenomena and	Demonstration	Deriving
		Determination of wavelength		itsapplication		theoretical formulas
		using Newton's rings.				Tormulas
	2	Diffraction – Differencebetween	3	To understandthe	Lecture,	
1	_	diffraction and interference -		basic conceptsof	Demonstration,	

	Theory of transmission grating –		diffraction	Theoretical	Assignment
	Normal incidence		phenomena and	formulation	on
			its application		applications
3	Optical activity – Biot's laws-	3	To understandthe	Lecture,	
	Specific rotatory power –		basic conceptsof	Demonstration,	Formative
	Determination of specific		optical activity	Theoretical	assessment
	rotatory power using Laurent's		phenomena and	formulation	
	half shadepolarimeter.		its application		

CO- Course Outcome; CL-Cognitive Level; R- Remember; U- Understand; Ap-Apply; C - Create.

Course Instructors: Ms. S. Virgin Jeba

Semester :IV

Course Name: Optics and Spectroscopy

Course Code : PC2041

No. of hours per week	No. of credits	Total No. of hours	Marks
4	4	60	100

Learning Objectives

- 1. To provide knowledge on the concept of aberrations in lenses, prisms and Spectroscopy.
- 2. To understand the phenomenon like interference, diffraction, polarization through wave nature of light and itsapplications.

Course Outcomes

COs	Upon completion of this course, students will be able to:	PSO addressed	CL
CO- 1	gain knowledge of geometric optics, helps in the practical design of many optical systems and instruments including aberrations in lens system.	PSO - 2	U
CO- 2	determine the behavior of a ray and wave at any optical surface.	PSO - 1	R
CO- 3	analyze the intensity variation of light due to polarization, interference and diffraction.	PSO - 4	An
CO- 4	study the phenomena: interference, diffraction, and polarization lays the foundation for an understanding of concepts such as as holograms, interferometers.	PSO -5	Е
CO- 5	gain knowledge on spectroscopy helps to extract the dynamic information about the mggcule.	PSO - 3	Ар

Modules

Total contact hours: 60 (Including lectures, assignments and Tests)

Unit	Section	Topics	Lecture hours	Learning outcome	Pedagogy	Assessment/ Evaluation
Ι	Geometr	rical optics		÷		
	1	Lens – Spherical aberration in lenses – Methods of minimizing spherical aberration	3	To understand the spherical aberrations in lenses	Illustration and lecture	Evaluati on through: quiz, short
	2	Dispersion – Angular and Chromatic dispersion – combination of prisms to produce i)dispersion without deviation ii) deviation without dispersion	3	To define and understand angular and Chromatic dispersion	Illustration and lecture	questions Multiple choice,
	3	Direct vision spectroscope – Eyepieces – Ramsden's and Huygens's eyepieces	2	To explain spectroscopes and various eyepieces	Illustration and lecture	question s,
	4	Simple microscope (magnifying glass)– compound microscope	1	To compareSimpl e and compound microscope	Group discussion and lecture	Formative assessment
II	Interfere	ence		· ·		
	1	Conditions for interference – Theory of interference fringes – interference due to reflected light (thin films)	3	To understand the basic concepts of interference and its condition	Illustration, demonstration and lecture	Evaluation through: quiz, Multiple choice,
	2	Colours of thin films – wedge shaped thin film – theory – determination of diameter of a thin wire by Air wedge	2	To determine the diameter of any thin wire using air- wedge method	Demonstration and lecture	question s, Exhibiting Models,
	3	Test for optical flatness – Newton's rings by reflected light	2	To test the optical flatness	Group discussion	Formative assessment
	4	Determination of wavelength of light - Michelson's Interferometer – theory and its Application (Measurement of wavelength)	2	To determine the wavelength of light source	lecture and Demonstration	
III	Diffracti					
	1	Fresnel's diffraction – Rectilinear propagation of light – zone plate – action of zone plate - Fraunhofer diffraction at single slit – Double slit	3 39	Differentiate Fresnel's and Fraunhoffer diffraction	Lecture discussion, PPT	Evaluation through: quiz, Assignments

	2 3	Plane diffraction grating – theory of plane transmission grating - experiment to determine wavelength (Normal incidence method) –resolving power Rayleigh's criterion for resolution – resolving power of a telescope – resolving power of a microscope – resolving power of a prism - resolving power ofgrating.	3	Discuss the theory of plane transmission gratig Evaluate the resolving power of various optical devices	Lecture discussion &Demonstrati on, PPT Lecture demonstration	Multiple choice questions Descriptive answers Formative assessment
IV	Polarisa					
	1	Double refraction –Nicol Prism – Nicol Prism as polarizer and analyzer – Huygens's explanation of double refraction in uniaxial crystals	3	To explain the basic principles & phenomena of polarisation	Lecture discussion, PPT	Evaluation through: quiz Assignments
	2	Plane, elliptically and circularly polarized light– Quarter wave plates and Half wave plates – Production and detection of plane, circularly and elliptically polarized light	3	To analyze different types of polarization	Lecture Illustration	Short questions Descriptive answers
	3	Optical activity– Fresnel's explanation of optical activity	3	Determine the various optical parameters by using optical components	Lecture discussion PPT	Formative assessment
V	Spectros	scopy	·			
	1	Infrared spectroscopy – sources and detector – uses – ultraviolet spectroscopy – sources – quartz spectrograph - applications -	4	Explain UV & IR spectroscopy and its applications	Lecture discussion, PPT	Evaluation through: quiz, Assignments on applications
	2	Raman Spectroscopy Nuclear magnetic resonance –Nuclear quadrupole resonance	2	Discuss the principles of NMR spectroscopy	Lecture discussion, PPT	Formative assessment
	3	Electron spin resonance	40	Analyze and study the	Group discussion,	

spectroscopies- (Qualitative study)	3	applications of ESR	PPT	
		spectroscopy.		

CO-Course Outcome; CL-Cognitive Level; R- Remember; U- Understand; Ap-Apply; An-Analyze; C - Create.

Course Instructors: Dr. M. Abila Jeba Queen & Dr. R. Krishna Priya

Semester IV

Course Name: Computer Programming in C++

Course code: PC2042

No. of hours per week	No. of Credits	Total No. of hours	Marks
4	4	60	100

Objectives

- To provide knowledge about the basics of Computer programming in C++ and to solve problems by writing programs.
- 2. To enable the students developing their own applications using C++.

Course Outcomes

COs	COs Upon completion of this course, students will be able to:		CL
CO-1	understand the different types of operators and expressions in C++ language.	PSO - 4	U
CO-2	implement different operation an arrays and use function to solve the given problem	PSO - 4	Ар
CO-3	understand member functions and constructors	PSO - 4	U
CO-4	analyze pointers, operator overloading and inheritance.	PSO - 4	An
CO-5	analyze input/output operations	PSO- 4	An

Modules

Credit: 5

Total	Hours:	60
-------	---------------	----

Unit	Section	Topics	Lecture	Learning	Pedagogy	Assesment/
			hours	outcome		Evaluation

Ι	C++ An Int	troduction				
	1	Introduction - tokens - keywords - identifiers and constants - declaration of variables - basic data types - user defined data types-derived data types	2	To understand the basics of C++ language	Illustration and PPT	Evaluation through: quiz
	2	Symbolic constants - operators in C++ -expressions and their type-hierarchy of arithmetic operators	3	To understand the types of operators	Illustration, PPT	Formative assessment Evaluation
	3	Scope resolution operator – declaring, initializing and modifying variables-special assignment operators -	2	To understand the applications of different operators	Lecture Discussion	through short test
	4	Control structures- Structure of a simple C ++ program	2	To understand and apply them to solve simple physical problems	Writing simple programme	
II	Arrays and	Functions in C++		· •		
	1	Introduction - one dimensional and two dimensional arrays - initialization of arrays-array of strings -	1	To understand the declaration of arrays	Illustration	Evaluation through: quiz Class test
	2	Functions-introduction-function with no argument and no return values -function with no argument but return value - function with argument and no return values	3	To understand function and types of function	Lecture, Writing simple programmes	
	3	Function with argument and return values- call by reference return by reference	2	To understand the use of arguments in function	Lecture Illustration , Writing simple programmes	
	4	Function prototyping - inline functions - local, -global and static variables	2 42	To acquire knowledge on function prototyping	Illustration , Writing simple programmes	

	5	Function overloading - virtual functions-main function-math library functions.	1	To acquire knowledge on library functions	Illustration and PPT	
III	Classes and	l Objects				
	1	Introduction - specifying a class - defining member functions- C++ program with class	2	To understand the basic concepts of object oriented programming	Lecture and Discussion	Evaluation through: quiz
	2	Nesting of member functions - private member functions - objects as function arguments	2	To understand the access of member functions	Lecture Illustration , Writing simple programmes	Formative assessment Evaluation
	3	Arrays within a class-array of objects-static class members- friend functions	2	To understand and remember the array declaration and apply	Lecture Illustration , Writing simple programmes	through short test Multiple choice
	4	Constructors - parameterized constructors-multiple constructors - constructors with default arguments - copy constructor.	3	To understand and remember the use of constructors	Lecture Illustration , Writing simple programmes	questions
IV	Operator C	verloading, Inheritance and Poin	nters	1		
	1	Introduction -defining operator overloading - overloading unary operators -binary operators	2	To understand and remember the operators	Lecture Illustration , Writing simple programmes	Evaluation through: quiz,
	2	Inheritance - single inheritance – multipleinheritance - multilevel inheritance - hybrid inheritance- hierarchial inheritance	4	To understand and apply the concept of inheritance in solving problems	Lecture Illustration , Writing simple programmes	Problem solving Theoretical derivation
	3	virtual base class-abstract class	1	To understand and analyse	Lecture Illustration , Writing simple programmes	Formative assessment
	4	Pointers-definition-declaration- arithmetic operations	2 43	To understand and apply the concept of inheritance in	Lecture Illustration , Writing simple programmes	

V	Managing	Console I/O Operations		solving problems		
	1	Introduction - C++ stream - C++ stream classes -	2	To understand and remember the stream classes in C++	Lecture Illustration , Writing simple programmes	Evaluation through: quiz, Problem
	2	unformatted I/O Operations - formatted console I/O operations	2	To understand ,analyse and apply in solving problems	Lecture Illustration , Writing simple programmes	solving Formative Assessment
	3	Working with files - classes for file steam operations	2	To understand ,analyse and apply in solving problems	Lecture Illustration, Writing simple programmes	Assignment
	4	Opening and closing a file - file pointers and their manipulations.	3	To understand ,analyse and apply in solving problems	Lecture Illustration , Writing simple programmes	

PO- Program outcome; LO – Learning outcome; Cognitive Level R – Remember; U – Understand; Ap- Apply, An- Analyze; E-Evaluate; C- Create

Semester III Course Name: Allied Physics II for Chemistry

Course Code: Subject code :AP2031

No of hours per week	No of credits	Total no of hours	Marks
4	4	60	100

Learning Objectives

 To understand the concepts of resistance of materials, capacity of conductors, effect of magnetic
 field due to passage of current, idea about the storp models and energy released in

field due to passage of current, idea about the atom models and energy released in breaking of atom.

To make an awareness in physical concepts behind electricity , electronics, basicsemiconductor diodes,
 44

transistor and basic logic gates.

Course Outcome

COs	Upon completion of this course students will be able to:	PSO addressed	CL
CO -1	Acquire knowledge on elementary ideas of electricity and magnetism, electronics, atomic and nuclear physics.	PSO-1	U
CO- 2	Analyze the concepts and study their applications in the field of electricity and magnetism, electronics and nuclear physics.	PSO -3	An
CO- 3	Apply their depth knowledge of Physics in day today life.	PSO -2	Ap
CO- 4	Develop their knowledge and carry out the practical by applying the concepts of a rectifier, amplifiers and oscillator, basic digital electronics principles through logic gates and the laws governing them.	PSO -4	R

Unit	Section	Topics	Lecture hours	Learning outcome	Pedagogy	Assessment/ Evaluation
Ι		Current Elect	ricity			
	1	Ohm's law – Law of resistance in series and parallel – Specific resistance – capacitors – capacitors in serial and parallel	2	To understand the basic conceptsof Ohm's law, series and parallel,capacitors	Illustration and lecture,PPT	Evaluation through: quiz, short questions
	2	Kirchoff's laws – Wheatstone's network – condition for balance Carey-Foster's bridge		Explain Kirchoff's laws and Carey- Foster's bridge	Illustration, theoretical derivation and Practical	Deriving theoretical Formulas Problem
	3	Measurement of resistance – measurement of specific resistance –determination of temperature coefficient of resistance	3	Discuss the temperature coefficient of resistance	Lecture and theoretical derivation	solving Formative assessment

	4.	Potentiometer – calibration of Voltmeter	1	Explain the orking of Potentiometer and calibration of Voltmeter	Illustration, theoretical derivation and lecture	
II		Electromagnetis	.sm		,†	
	1	Electromagnetic Induction – Faraday's laws – Lenz law	3	To understand the basic concepts of laws of electromagnetic Induction	Illustration, theoretical derivation and lecture	Evaluation through: quiz, short questions
	2	Self Inductance – Mutual Inductance – Coefficient of Coupling A.C. Circuits	3	Dicuss the inductance of the coil and coupling of circuits	PPT, theoretical derivation	Multiple choice, questions ,
	3	Mean value – RMS value – Peak value	1	Derive Mean value , RMS value and Peak value	Illustration, theoretical derivation and Demonstration	Deriving theoretical formulas Formative
	4.	LCR in series circuit – impedance – resonant frequency – sharpness of resonance.	- 3	Explain the LCR circuit and resonant frequency	PPT, theoretical derivation and Demonstration	assessment
ш		and Nuclear Physics				
	1	Bohr's atom model – radius energy – Atomic excitation – Ionization potential	2	To understand the concept of Bohr's atom model	PPT, Lecture and Demonstration	Multiple choice,
	2	Frank and Hertz Method – Nucleus – Nuclear properties – Mass defect – Binding energy	2	Explain the Frank and Hertz and discuss the Nuclear properties	Theoretical	questions ,
	3	Radio isotopes – Uses of radio isotopes – Nuclear fusion and Nuclear fission	3 46	To understand the concept of Radio isotopes, Uses of radio isotopes	Lecture , Illustration, Theoretical formulation Practical	Deriving theoretical formulas
				Explain the	1 Iuoticui	Formative

	4.	X-rays – Production – properties –Derivation of Bragg's law – uses in industrial and medical fields	2	concept of Nuclear fusion and Nuclear fission Discuss X-rays, properties and applications	Lecture, Demonstrat ion,PPT	assessment
IV		Analog Electro	onics			
	1	Semiconductor – PN junction diode – Bridge rectifier – Zener diode – Regulated power supply.	2	To understand the basic concepts of electronics and various aspects of zener diode	Lecture, Demonstration, theoretical formulation	Evaluation through: quiz, short questions Multiple
	2	Transistor – Working of a transistor – CE Configuration – current gain	2	To understand the concept of transistor and its working	Lecture, Demonstration, theoretical formulation	choice, questions, Deriving theoretical
	3	Transistor Characteristics – CE Configurationβ and αrelationship only	2	To understand the conceptof transistor characteristics	Lecture, Demonstration, theoretical formulation	formulas Formative assessment
	4	CE amplifier – feedback – Hartley oscillator	2	To understand the concept of feedback amplifier and oscillator	Lecture, Demonstration, theoretical formulation	
V	1	Digital Electro		T 1 4 14		
	1	Number system – Decimal – Binary – Double Dabble method	2	To understand the number system		Evaluation through: quiz, Deriving theoretical
	2	Binary addition, subtraction and multiplication – conversion of one number system to another number system	2	To understand the binary operations and conversions	Lecture, Theoretical formulation Problem solving	formulas
	3	Logic gates – OR, AND, NOT, XOR, NAND and NOR gates – truth tables	42	To understand the basic concepts of logic gates	Lecture, Demonstration,	

				Theoretical formulation
				Problem solving
4	Laws and theorems of Boolean'salgebra – De Morgan's theorems.	2	To understand the basic concepts of Boolean Algebra	Theoretical

CO- Course Outcome; CL-Cognitive Level; R- Remember; U- Understand; Ap-Apply; C - Create.

Course Instructors: Ms. S. Virgin Jeba

Head of the Department: Dr. C. Nirmala Louis

DEPARTMENT OF PHYSICS

HOLY CROSS COLLEGE (Autonomous), Nagercoil-629004

III BSc Physics

Teaching Plan

Semester V

Major Core -- V

Name of the Course : Classical and Statistical Mechanics

Subject code : PC2051

Hours/Week	Credits	Total Hours	Marks	
6	5	90	100	

Learning Objectives

- 1. To understand the mechanics of systems of particles and their equations of motion
- 2. To study the concept of statistics of molecules.

Course Outcome

COs	Upon completion of this course, students will be able to:	PSO addressed	CL
CO-1	understand the basic mechanical concepts related to system of particles	PSO-1	U
CO-2	apply various mechanical principles to find solution for physical problem	PSO-4	Ар
CO- 3	solve the equations of motion using Hamiltonian formalism	PSO-6	С
CO- 4	explain the fundamental postulates of statistical mechanics and Maxwell Boltzmann statistics	PSO-1	R
CO- 5	understand and develop a scientific knowledge in quantum statistics	PSO-7	U

ModulesCredits: 5Total contact hours: 90 (Including assignments and tests)

Unit	Section	Topics	Lecture hours	Learning outcome	Pedagogy	Assessment/ Evaluation
Ι	Mechani	ics of a System of Parti	cles			
	1	External and internal forces, center of mass	4	To be able to differentiate external and internal forces	Lecture Discussion with PPT illustration	Evaluation through Online quiz Class test Formative assessment I
	2	Conservation of linear momentum- Conservation of angular momentum- Conservation of energy- work- energy theorem-	4	To acquire knowledge on conservation of momentum and Energy	Lecture discussion SLO	
	3	Conservative forces- examples- Constraints-Types of constraints- Examples- Degree of freedom-	4	To understand the different types of constraints	Lecture discussion	
	4.	Generalized coordinates (transformation equations) – Generalized Velocities- Generalized Momentum.	3	To acquire knowledge on Generalized coordinates	Lecture discussion, PPT	
II	Lagrang	ian Formulations		I	I	I
	1	Principle of virtual work, D'Alembert's principle	4	To know the principle of virtual work	Lecture Discussion with PPT Illustration	Short test Quiz
	2	Lagrange's equation	4	To understand	Lecture	Assignment

[of motion for		the concept	discussion	
		conservative and non		Lagrange's	discussion	Formative
		conservative systems		equation of		assessment I
		conservative systems		motion		ussessment I
	3	Simple applications-	3	To be able to	Lecture	-
	5	simple pendulum-	5	derive	Leeture	
		Atwood's machine-		Lagrange's	Illustration	
		compound pendulum		equation of	mustrution	
		compound pendulum		motion in		
				simple		
				systems		
	4	Hamilton's principle-	4	To acquire		-
		Deduction of		knowledge on		
		Lagrange's equation		Hamilton's		
		of motion from		principle		
		Hamilton's principle		FF		
		- Deduction of				
		Hamilton's principle				
		from D'Alembert's				
		principle				
III	Hamilton	nian Formulations				
	1	Phase space- The	5	To acquire	Lecture	
		Hamiltonian		knowledge on	with PPT	Evaluation
		function H-		Hamiltonian	Illustration	through
		Hamilton's		function		Online quiz
		1				Assignment
		of motion				
						Formative
	2	Physical significance	5	To be able to	Question-	assessment II
		of H-Deduction of		deduce	answer	
		Canonical equation		Canonical	session	
		from a variational		equation from	.	
		principle		a variational	Lecture	
	2	A 1' ('		principle	T (
	3	Applications-	5	To be able to	Lecture	
		Harmonic Oscillator-		derive	discussion	
		Planetary motion-		Hamilton's	with illustration,	
		Compound pendulum		Canonical	SLO	
		pendurum		equation of	SLU	
				motion		
				in simple		
				systems		
IV	Classical	l Statistics	I		1	1
	1	Micro and macro	5	To understand	Lecture	Evaluation
1	-	interio una macio	-	10 understand		

1 1		states- The mu-space		the concept		through
		and gamma space-		Micro and	Discussion	Online quiz
		fundamental		macro states	Discussion	Ollille quiz
				inacio states		
		postulates of				Formative
		statistical mechanics				assessment II
	2	Ensembles- different	5	To acquire		
		types-		knowledge on	Lecture	
		Thermodynamical		Ensembles	D ' '	
		probability - entropy			Discussion	
		and probability				
	3	Boltzmann's theorem-	5	To acquire	Brain	
	-	Maxwell- Boltzmann	-	knowledge	storming	
		statistics- Maxwell-		Maxwell-	session.	
				Boltzmann		
		05		velocity	Lecture	
		distributive law-		distributive		
		Maxwell- Boltzmann		law	Illustration	
		velocity distributive				
		law.				
V	Quantun	n Statistics				
	1	Development of	5	To have clear	Lecture	Short test
		Quantum statistics		idea about	with PPT	
		Quantum statistics-				
		Bose- Einstein and		Quantum		Formative
		Bose- Einstein and Fermi- Dirac		Quantum statistics		Formative assessment III
	2	Bose- Einstein and Fermi- Dirac statistics-	5	statistics	Durin	
	2	Bose- Einstein and Fermi- Dirac statistics- Derivation of	5	statistics To be able to	Brain	
	2	Bose- Einstein and Fermi- Dirac statistics- Derivation of Planck's radiation	5	statistics To be able to derive Planck's	storming	
	2	Bose- Einstein and Fermi- Dirac statistics- Derivation of Planck's radiation formula from Bose–	5	statistics To be able to derive Planck's radiation		
	2	Bose- Einstein and Fermi- Dirac statistics- Derivation of Planck's radiation	5	statistics To be able to derive Planck's radiation formula from	storming session.	
	2	Bose- Einstein and Fermi- Dirac statistics- Derivation of Planck's radiation formula from Bose–	5	statistics To be able to derive Planck's radiation formula from Bose Einstein	storming	
	2	Bose- Einstein and Fermi- Dirac statistics- Derivation of Planck's radiation formula from Bose–	5	statistics To be able to derive Planck's radiation formula from	storming session.	
	2	Bose- Einstein and Fermi- Dirac statistics- Derivation of Planck's radiation formula from Bose–	5	statistics To be able to derive Planck's radiation formula from Bose Einstein	storming session. Lecture	
		Bose- Einstein and Fermi- Dirac statistics- Derivation of Planck's radiation formula from Bose– Einstein statistics		statistics To be able to derive Planck's radiation formula from Bose Einstein statistics	storming session. Lecture Illustration	
		Bose- Einstein and Fermi- Dirac statistics- Derivation of Planck's radiation formula from Bose– Einstein statistics		statistics To be able to derive Planck's radiation formula from Bose Einstein statistics To be able to	storming session. Lecture Illustration Lecture	
		Bose- Einstein and Fermi- Dirac statistics- Derivation of Planck's radiation formula from Bose– Einstein statistics Free electrons in metal- Fermi Gas-		statistics To be able to derive Planck's radiation formula from Bose Einstein statistics To be able to mention the	storming session. Lecture Illustration Lecture	
		Bose- Einstein and Fermi- Dirac statistics- Derivation of Planck's radiation formula from Bose– Einstein statistics Free electrons in metal- Fermi Gas- Difference between		statistics To be able to derive Planck's radiation formula from Bose Einstein statistics To be able to mention the difference	storming session. Lecture <u>Illustration</u> Lecture with PPT	
		Bose- Einstein and Fermi- Dirac statistics- Derivation of Planck's radiation formula from Bose– Einstein statistics Free electrons in metal- Fermi Gas- Difference between classical and		statistics To be able to derive Planck's radiation formula from Bose Einstein statistics To be able to mention the difference between	storming session. Lecture <u>Illustration</u> Lecture with PPT	

PO- Program outcome; LO – Learning outcome; Cognitive Level U – Understand; Ap- Apply, An-Analyze;

Course instructors: Dr.A.Lesly Fathima, Dr.S.Sonia and Dr.S.J Jenepha MaryHead of the Department: Dr. C. Nirmala Louis

Holy Cross College (Autonomous), Nagercoil-629004 B.Sc Physics :V

Semester

Name of the Course: Analog Electronics: Major Core -VI

Subject Code : PC2052

No. of hours per week	No. of credits	Total No. of hours	Marks
6	5	90	100

Learning Objectives

- 1. To impart in depth knowledge about Semiconductors, diodes, Transistors, Operational Amplifiers, oscillators etc
- 2. To enable the students to understand the aspects of analog electronics in a lucid and comprehensive manner.

Course Outcome

COs	Upon completion of this course, students will be able to:	PSO addressed	CL
CO-1	understand the fundamental principles of semiconductors including P-N junctions and zener diode	PSO-1	U
CO-2	illustrate network theorems like Thevenin's theorem, Norton's theorem etc.,	PSO-2	U
CO-3	Analyzethe operation of transistor, amplifier, oscillator and multivibrator	PSO-3	Ε
CO-4	demonstrate practical skills in the simulation, construction and testing of simple electrical and electronic circuits.	PSO-6	Ар

Modules

Credits: 5 Total contact hours: 90 (Including lectures, assignments and tests)

Unit	Module	Topics	Lecture hours	Learning outcome	Pedagogy	Assessment/ Evaluation
Ι	Linear o	circuit analysis and semicone	ductor di			
	1	Constant voltage source - constant current source - Maximum power transfer theorem - Thevenin's theorem - procedure for finding Thevenin Equivalent circuit	4	To apply the usage of constant voltage source and current source in Thevenin's circuit	Lecture Discussion and Problem Solving	Evaluati on through: quiz, short questions
	2	PN junction theory - V-I characteristics of a PN junction diode - Half wave rectifier - Bridge rectifier - Efficiency	4	To understand the fundamental principles of PN junction. To calculate the efficiency of rectifier circuits	Lecture Discussion and Problem Solving	Formative assessment
	3	filters - Shunt capacitor filter – pi filter - Zener diode - equivalent circuit - voltage regulator	3	To understand the various filter circuits. To study about the usage of filter circuits on voltage regulator	Lecture Discussion and Problem Solving	
	4	LED - V-I characteristics – advantages - applications - photo diode - characteristics applications.	4	To understand the principle and working of LED and photodiode	Discussion and lecture	
II	Transis	tor Amplifier				
	1	Transistor - Different modes of	3	To understand	Demonstration	

		operations-CB mode &CE mode		the different modes of transistor operations	and lecture	Evaluation through: quiz, Multiple
	2	Two port representation of a transistor- h parameter - AC equivalent circuit using h parameters- analysis of amplifiers using h parameters (CE only)	3	To apply the h parameters in analyzing the amplifiers	demonstration and lecture – cum- discussion, Problem Solving	choice, question s,
	3	RC coupled amplifier - transformer coupled amplifier	3	To understand RC coupled and transformer coupled amplifier	Lecture-cum- Discussion and Demonstration	Formative assessment
	4	Power amplifier	2	To understand the principles and working of Power amplifier	Lecture- cum- discussion	
	5	Classification of amplifiers - Class A, Class B and Class C	2	To compare Class A, Class B and Class C amplifiers	Group Discussion and lecture	Multiple choice, question s,
	6	Push pull amplifier – Emitter follower	2	To understand Push pull amplifier and emitter follower	Lecture, Group Discussion	Formative assessment
III	Oscillat	ors and Multivibrator				
	1	Principle -effect negative feedback-and Barkhaussen criterion	3	To understand aboutfeedback principle of oscillators	Lecture-cum- discussion, Problem solving	Evaluation through: quiz, Assignments
	2	Phase shift and Wien Bridge oscillators using transistors – Expression for frequency	4	To derive the expression of frequency of phase shift and Wein Bridge oscillators.	Lecture discussion, Problem solving	Multiple choice questions
	3	Multivibrators-Astable and ,Monostable	4	To discuss about Astable and	Demonstration, Lecture-cum- discussion	Descriptive

				MonostableMul tivibrators		answers
	4	Bistable multi vibrators using transistors - Schmitt trigger.	4	To discuss about bistableMultivi brator	Demonstration, Lecture-cum- discussion	Formative assessment
IV	Special	Semiconductor Devices				
	1	Clipping and clamping circuits	3	To understand about clipping and clamping circuits	Lecture-cum- discussion	Evaluation through: quiz Assignments
	2	Differentiating circuit - Integrating circuit	3	To construct the differentiator and integrator circuits.	Lecture, Demonstration, Group discussion	Short questions
	3	Field effect Transistor FET- MOSFET	3	To understand about FET transistor	Lecture-cum- discussion	Descriptive answers
	4	UJT-SCR -characteristics - FET as a VVR	3	To discuss about the characteristics of FET	Lecture-cum- discussion	Formative assessment
	5	UJT relaxation oscillator-SCR as a switch and rectifier	3	The understand about the principles of UJT relaxation oscillator	Lecture-cum- discussion	
V	Operati	ional Amplifier				
	1	Operational Amplifier- characteristics-parameters- applications- Inverting amplifier - Non inverting amplifier	4	To understand the basic concepts of operational Amplifier, inverting and non-inverting	Lecture-cum- discussion, Demonstration	Evaluation through: quiz, Assignments on operational amplifier
	2	Voltage follower- Adder - Subtractor - Integrator – Differentiator	4	To construct the differentiator and integrator circuits using IC 741	Lecture-cum- discussion, Demonstration	problems Formative assessment
	3	Solving simultaneous equations-comparator -square wave generator	4	To solve the simultaneous equations using Op-amp.	Lecture-cum- discussion, Demonstration	

4	Wien bridge oscillator -Schmitt	3	To construct the	Lecture-cum-	
	trigger		Schmitt trigger	discussion,	
			using IC741	Demonstration	

CO-Course Outcome; CL-Cognitive Level; R- Remember; U- Understand; Evaluate-E; Ap-Apply; An-Analyze; C - Create.

Course Instructors: Dr. R. Krishna Priya & Dr. M. Priya Dharshini

HOLY CROSS COLLEGE (Autonomous), Nagercoil-629004

BSc Physics

Semester V

Major Core VII: Solid State Physics

Course Code: PC2053

Hours/Week	Credits	Total hours	Marks
5	5	75	100

Learning Objectives

- 1. To impart knowledge on the structure of crystals and the different types of materials.
- 2. To develop a scientific attitude at micro and nano scales of materials

Course Outcomes

COs	Upon completion of this course, students will be able to:	PSO addressed	CL
CO - 1	illustrate various types of bonding present in solids with example.	PSO - 1	U
CO - 2	explain the various crystal parameters and structures.	PSO - 3	E
CO - 3	discuss the various theories involved in magnetic materials. (dia, para, ferro, ferri and antiferro magnetism)	PSO - 3	С
CO - 4	describe polarization processes and analyze the information contained in the temperature and frequency dependence of dielectric materials.	PSO - 1	С
CO - 5	analyze the structure and physical properties of semiconductors.	PSO - 5	An
CO - 6	describe and discuss the theory of superconductivity and superconducting materials.	PSO - 2	С

Modules

Credits: 5

Total contact hours: 75 (Including assignments and tests)

Unit	Section	Topics	Lectur hours	e Learning outcome	Pedagogy	Assessment/ Evaluation
I	Bonding	in Solids				
	1	Types of bonds in crystals - Ionic, covalent, Metallic, Vand waal's and Hydrogen Bonding	er	To understand the fundamental principles of types of bonds in crystals	Lecture and Discussion	Evaluati on through:

	2	Bond energy of sodium chloride molecule - variation of inter atomic force with inter atomic spacing	3	To analyze the variation of inter atomic force with inter atomic spacing	Lecture and Discussion	quiz, short questions
	3	Cohesive energy - cohesive energy of ionic solids - application to sodium chloride crystal	3	To understand the cohesive energy	Lecture Discussion and Problem Solving	Formative assessment
	4	Evaluation of Madelung constant for sodium chloride	3	To derive the Madelung constant for sodium chloride	Discussion and lecture	
п	Crystal	Structure and Crystal Diffraction				
	1	Crystal Lattice -Primitive and unit cell-seven classes of crystal- Bravais Lattice- Miller Indices	3	To understand the seven classes of crystal	Demonstratio n and lecture	Evaluation through: quiz,
	2	Crystal Diffraction – Bragg's Law	3	To apply the Bragg's Law	demonstratio n and lecture –cum- discussion, Problem Solving	Multiple choice, questions,
	3	Experimental methods-Laue method, powder method and rotating crystal method	3	To understand the experimental methods	Lecture-cum- Discussion and Demonstratio n	Formative assessment
	4	Reciprocal lattice- Intensity and structure factor.	3	To analyze the reciprocal lattice	Lecture- cum- discussion	
III	Magnet	ic Properties				
		Spontaneous Magnetization – Weiss Theory – Temperature dependence of Magnetization	3	To understand the Weiss Theory of Magnetization	Lecture-cum- discussion, Problem solving	Evaluation through: quiz, Assignments
	2	Classical Theory of Diamagnetism	3	To discuss the classical Theory of Diamagnetism	Lecture discussion, Problem	Multiple

					solving	choice
	3	Weiss theory of Para magnetism – Ferromagnetic domains – Bloch wall	3	basics of Ferromagnetic	Demonstratio n, Lecture- cum-	questions
	4	Basic ideas of anti- ferromagnetism – Ferri magnetisms – Ferrites in computer Memories.	3	domains To discuss about the ferrites and its applications	discussion Demonstratio n, Lecture- cum- discussion	Descriptive answers Formative
IV	Dielect	tric Properties				assessment
	1	Band theory of solids – classification of insulators, Semiconductors, conductors	3	To understand the band theory of solids	Lecture-cum- discussion	Evaluation through: quiz Assignments Short
	2	Intrinsic and extrinsic semiconductor	3		Lecture, Demonstratio n, Group discussion	questions Descriptive answers Formative
	3	Carrier concentration for electron - Barrier Potential Calculation	2	To understand the carrier concentration for electron	Lecture-cum- discussion	assessment
	4	Rectifier Equation Dielectrics - Polarization – frequency and temperature effects on polarization	2	To discuss about the Accelerators	Lecture-cum- discussion	
	5	Dielectric loss-Clausius Mosotti relation- determination of dielectric constants.	2	The understand about the principles of betatron and synchrotrons	Lecture-cum- discussion	
V	Super	Conductivity				
	1	Introduction - General Properties of Superconductors - effect of magnetic field		To understand the basic concepts of Superconductors	Lecture-cum- discussion, Demonstratio n	Evaluation through: quiz, Assignments
	2	current- thermal properties- entropy-specific heat -energy gap - isotope effect	3	To discuss Meissner effect	Lecture-cum- discussion, Demonstratio n	Formative assessment
	3	London equations - AC & DC Josephson effects -		To understand the London equations	Lecture-cum- discussion,	

	applications-			Demonstratio
				n
4	Type–I and Type–II	3	To discuss the	Lecture-cum-
	Superconductors - Explanation		Type–I and Type–	discussion,
	for the Occurrence of Super		II Superconductors	Demonstratio
	Conductivity - BCS theory -		and application of	n
	Application of Superconductors		Superconductors	
	- High TCsuperconductors.		_	

CO-Course Outcome; CL-Cognitive Level; R- Remember; U- Understand; Ap-Apply;

An-Analyze; C - Create.

Course Instructors: Dr. C.Nirmala Louis & Dr. V.Shally

Holy Cross College (Autonomous), Nagercoil-629004 B.Sc. Physics

Semester :VI

Name of the Course: Relativity and Quantum Mechanics : Major Core –VIII

Subject Code : PC2061

Hours/Week	Credits	Total Hours	Marks	
б	5	90	100	

Learning Objective

1. To acquire sufficient knowledge in the concept of Relativity, dual nature of matter waves,

2. To apply the Quantum mechanics principles, Operator formalisms and derive Schrodinger equation and its applications.

Course Outcome

COs	Upon completion of this course, students will be able to:	PSO addressed	CL
CO - 1	gain knowledge in the concepts of special and theory of relativity	PSO - 1	U
CO - 2	evolve ideas about dual nature of matter	PSO - 2	Ε
CO - 3	recognize basic terms in Quantum Mechanics and different operator mechanism	PSO - 3	С
CO - 4	apply of Schrödinger's equation to micro system	PSO - 4	Ар

Teaching Plan

Total contact hours: 90 (Including lectures, assignments and Tests)

Unit	Module	•	Lectur e hours	Learning outcome	Pedago gy	Assessment/ Evaluation
I	Relativit	y:		Γ		
	1	Frames of reference - Galilean transformation.	4	Describe different frame of reference and	Lectur e,disc ussion PPT	Multiple Choice Questions

				transform ations.		
	2	Michelson-Morley experiment -Postulates of special theory of relativity	3	Able to explain Michelson morely experiment.	Lecture demons tration PPT	Quiz,
	3	Lorentz transformation - length Contraction – time dilation - Relativity of simultaneity - addition of velocities	5	Able to apply Lorentz transormatio n in the case of length, time and velocity	Lecture demons tration PPT	Formative Assessment I
	4	Variation of mass with velocity– Mass energy relation - Elementary ideas of general relativity.	3	Able to understand general relativity.	PPT Lectur e discus sion	Assignment
II	Wave T					
	1	Wave Nature of Matter Phase and group velocity.	3	Describe particle wave nature.	PPT Lecture discussi on	Multiple Choice Questions
	2	Wave packet - expression of De Brogile's wave length.	4	Derive debroglie waveleng th	PPT Lecture discussi on	Quiz, Formative Assessment I
	3	Davisson and Germer's experiment - G.P.Thomson's experiment.	5	Able to explain wave nature experiments.	PPT Lecture	
	4	Heisenberg's uncertainty principle and its consequences.	3	Able to describe uncertanitie s.	Lecture PPT	
III	Fundam	entals of quantum mechanics:				
	l Sc	chrodinger Equation Inadequacy of assical mechanics - Basic postulates		Describe the postulates of quantum	Lectur e, PPT	Multiple Choice Questions

	of quantum mechanics.		mechanics.		
	2 Schrodinger equation - Properties of wave function - Probability interpretation of wavefunction.		Derive and interpret schrodinger wave equation.	Lecture PPT	Quiz, Formative Assessment I & II
	3 Linear operators - self adjoint operators .	3	Recognize operators	Lecture PPT	
	Expectation value - eigenvalues and eigenfunctions - commutativity and compatibility.		Able to calculate Eigen values and functions.	Lecture PPT	
IV	Operators:	I			
	1AngularMomentuminQuantumMechanicsOrbitalangularmomentumoperatorsandtheircommutation relations.		Recognize different operators and its relations	Lectur e discus sion, PPT	Multiple Choice Questions
	2 Separation of three dimensional Schrodinger equation into radial and angular parts	5	Separate Schrodinger equation into radial and angular parts	Lecture discussi on, PPT	Quiz, Formative
	3 Elementary ideas of spin angular momentum of an electron - Pauli matrices.		Understand Elementary ideas in quantum mechanics	Lecture discussi on, PPT	Assessment II
V	Applications of Schrodinger Equation:				
	Solutions of Schrodinger Equation 1 — Time dependent and time independent Schrodinger equation.		Able to apply Schrodinger Equation in time dependent and time independent state.	Lecture discussi on, PPT	Multiple Choice Questions Quiz,

2	Free particle solution - Particle in a box - Potential well of finite depth (one dimension).	5	Able to apply Schroding er Equation in Particle in a box	Lecture discussi on, PPT	Formative Assessment II
	Linear harmonic oscillator - rigid rotator and hydrogen atom.	5	Able to apply harmonic oscillator.	Group discussi on, PPT	

Course Instructor: Dr. M. Abila Jeba Queen

HOLY CROSS COLLEGE (Autonomous), Nagercoil-629004

B.Sc. Physics

Semester :VI Name of the Course: Digital and Communication Electronics: Major Core – IX

Subject Code : PC2062

Hours/Week	Credits	Total Hours	Marks
6	5	90	100

Learning Objectives

1. To understand the structure of various number system and basic Logic gates.

2. To design and solve the Boolean Algebra simplification and Karnaugh Maps.

3. To construct sequential circuits and to design counters.

COs	Upon completion of this course, students will be able to:	PSO addressed	CL
CO -1	Understand the basic operation, and features related to Logic gates and interprets their applications.	PSO-1	U
CO -2	Acquire knowledge on number system, arithmetic building blocks, and memories.	PSO-3	E
CO -3	Understand the fundamental concepts of logic gates, counters, registers, fiber optics, etc.	PSO-1	U
CO -4	Develop skill to build and troubleshoot combinational digital circuits.	PSO-7	Ар
CO-5	Understand AM, FM and PM modulation and demodulation techniques.	PSO-1	U
CO-6	Assess the basic concepts of fiber optics and types of fiber	PSO-2	Е

Course Outcome

	diodes, transistor, op-amps and converters.		
CO-7	Learn the working principle of satellite communication system.	PSO-6	С

Modules Credits: 5 Total contact hours: 90 (Including lectures, assignments and tests)

Unit	Module	Topics	Lecture hours	Learning outcome	Pedagogy	Assessment/ Evaluation
Ι	Digital F	undamentals		I		<u> </u>
	1	NumberSystemsandConversions-Binary-CodedDecimal(BCD)Code-Gray1'sand2'scomplements	6	To understand the concept of number systems.	Lecture discussion with PPT illustration	Evaluation through short test Multiple choice questions Formative assessment I
	2	Basic logic gates - NAND, NOR and EX-OR gates - NAND and NOR as Universal Building blocks - Laws and theorems of Boolean algebra	5	To analyze the operation of basic and universal logic gates and the laws of Boolean algebra.	Lecture discussion with illustration	
	3	NAND-NAND circuits - Karnaugh's map- Sum of Product (SOP) and Product of Sum (POS) - applications	4	To evaluate the Sum of Product (SOP) and Product of Sum (POS) using Logic gates.	Lecture discussion	

II	Sequenti	al Logic				
	1	RS-Flip flop, Clocked RS Flip flop, D-Flip flop, J- K and J-K Master- Slave Flip-flop	6	To identify the principle of flip flops.	Lecture discussion with PPT Illustration	Short test Quiz Assignment
	2	Shift registers and Counters - Multiplexers and Demultiplexers	4	To acquire knowledge on shift registers and multiplexers.	Lecture discussion	Formative assessment I
	3	Decoders and Encoders - Memory Circuits - D/A and A/D converters - applications	5	To categorize the applications of encoders and analog to digital converters.	Lecture Illustration	
III		ion and Demodulation				
	1	AmplitudemodulationFrequencymodulation,PhaseModulationPulseModulation -	5	To recall the concept of modulation and to recognize the different types of modulation and demodulation techniques.	Lecture with PPT Illustration	Short test Quiz Assignment Formative
	2	Detectors of Amplitude Modulation (AM), Frequency Modulation (FM)	4	To acquire knowledge on different kinds of the demodulators used in amplitude and frequency modulation.	Lecture discussion	assessment I
	3	Phasemodulation(PM)andPulse	6	To understand the concept of phase modulation	Question- answer session	

IV	Digital and 1	width modulation (PWM), Phase locked loop (PLL) - Noise in Communication Systems. nd Satellite Communica Amplitude Shift Keying (ASK), Frequency Shift Keying (FSK), Phase Shift Keying (PSK) Modulation and Demodulation, Advantages and disadvantages of digital communication.	cation 3	and noise in AM and FM systems. To understand the concept of Amplitude Shift Keying (ASK), Frequency Shift Keying (FSK), Phase Shift Keying (FSK), Phase Shift Keying (PSK).	Lecture Lecture with PPT Illustration	Short test Quiz Assignment Formative assessment II
	2	Communication Satellite Systems - Telemetry - Tracking and Command System- Satellite Links Commonly Used frequency in Satellite Communication - Multiple access - Error Detection.	6	To acquire knowledge on different kinds Satellite Communicatio n Systems. To understand the concept of phase modulation and noise in AM and FM	Lecture Discussion Question- answer session Lecture	

				systems.		
V	Fibre O	ptic Communication			1	
	1	Basic Fibre Optic System - Advantages of Fibre Optic System - Propagation of light through fibre	6	To acquire knowledge on fibre optic systems.	Lecture with PPT	Short test Quiz Assignment Formative assessment II
	2	Numerical aperture - Acceptance angle - Losses and distortion in optical fibres	5	To evaluate the parameters related to loss in optical fibres.	Brain storming session. Lecture Illustration	
	3	Basic Fibre Optical communication and links - Special applications	4	To learn the applications of optical communicatio n.	Lecture with PPT Illustration	

CO-Course Outcome; CL-Cognitive Level; R- Remember; U- Understand; E-Evaluate; Ap-Apply; An-Analyze; C - Create.

Course Instructors: Dr. R. Krishna Priya& Dr. M. Priya Dharshini

HOLY CROSS COLLEGE (Autonomous), Nagercoil-629004

B.Sc. Physics

Semester: VI Course Name: Nuclear Physics Course code: PC2063

Hours/Week	Credits	Total hours	Marks
5	5	75	100

Learning Objectives

- 1. To acquire knowledge on static properties of nuclei and its stability.
- 2. To understand the background of various nuclear models.
- 3. To know about different modes of decay and interaction of nuclear radiations with matter

Course Outcome

COs	Upon completion of this course, students will be able to:	PSO addressed	CL
CO 1	understanding on the basics of nuclear physics that treats atomic nuclei as self-bound many-body quantum systems	PSO-1	U
CO2	knowledge about particle- antiparticle, decay processes and their outcomes.	PSO-2	U
CO 3	basic interaction between fundamental particles.	PSO-4	An

Modules

Credits: 5 Total contact hours: 75 (Including assignments and tests)

Unit	Section	Topics	Lecture hours	Learning outcome	Pedagogy	Assessment/ Evaluation
Ι	Properti	es and structure of Nuclei				
	1	General properties of nucleus- binding energy – BE/A curve - significance	3	To apply the binding energy per nucleon curve in the calculation of energy.	Lecture Discussion and Problem Solving	Evaluati on through: quiz, short questions

	2	proton electron theory- proton neutron theory	3	To understand the fundamental principles of proton electron theory .	Lecture Discussion and Problem Solving	Formative assessment
	3	nuclear forces –characteristics – Meson theory of nuclear forces	3	To understand the various nuclear forces To study Meson theory of nuclear forces	Lecture Discussion and Problem Solving	
	4	Yukava Potential- Nuclear models.	3	To understand the principle and working of Nuclear models.	Discussion and lecture	
II	Radio A	ctivity				
	1	Fundamental laws of radio activity –theory of α , β and Υ decay	3	To understand the different modes of radio activity	Demonstration and lecture	Evaluation through: quiz,
	2	properties of alpha, beta and gamma rays	3	To apply the properties of alpha, beta and gamma rays in reactors	demonstration and lecture – cum- discussion, Problem Solving	Multiple choice, questions,
	3	neutrino and its properties- electron capture	2	To understand neutrino and its properties	Lecture-cum- Discussion and Demonstration	Formative
	4	nuclear isomers- Mossabauer effect - applications	2	To understand the principles and working of Mossabauer spectroscopy	Lecture- cum- discussion	
	5	Radio carbon dating- radio isotopes – uses.	2	To compare radio isotopes and its uses.	Group Discussion and lecture	
III		Reactions				
	1	Kinematics of nuclear reaction- nuclear fission –Nuclear fusion	3	To understand about nuclear fission and Nuclear fusion	Lecture-cum- discussion, Problem solving	Evaluation through: quiz, Assignments

	2	Nuclear reactor-uses - atom bomb hydrogen bomb-fusion reactor – plasma confinement	3	To discuss about Nuclear reactor and its uses To discuss about hydrogen bomb and	Lecture discussion, Problem solving Demonstration, Lecture-cum- discussion	Multiple choice questions
	4	Artificial transmutation-Q value of nuclear reaction-types of nuclear reaction	3	fusion reactorTodiscussabouttypes ofnuclear reaction	Demonstration, Lecture-cum- discussion	Descriptive answers Formative assessment
IV	Nuclear	Detectors and Particle Accelerate	ors			
	1	Neutron sources and properties	3	To understand about Neutron sources and properties	Lecture-cum- discussion	Evaluation through: quiz Assignments
	2	Detectors-G.M.Counter- scintillation counter	3	To construct Detectors like G.M.Counter and scintillation counter	Lecture, Demonstration, Group discussion	Short questions
	3	bubble chamber-Wilson cloud chamber	2	To understand about bubble chamber and Wilson cloud chamber	Lecture-cum- discussion	Descriptive answers Formative assessment
	4	Accelerators-cyclotron- synchrocyclotron	2	To discuss about the Accelerators	Lecture-cum- discussion	
	5	betatron-synchrotrons	2	The understand about the principles of betatron and synchrotrons	Lecture-cum- discussion	
V	Cosmic 3	Rays and Elementary Particles				
	1	Cosmic rays-introduction- discovery-latitude, altitude and azimuth effects- longitudinal effect-north –south effect	3	To understand the basic concepts of Cosmic rays	Lecture-cum- discussion, Demonstration	Evaluation through: quiz, Assignments
	2	seasonal and diurnal changes- primary and secondary cosmic rays-nature of cosmic rays- cosmic ray showers Van Allen belt- origin of cosmic radiation.	3	To discuss primary and secondary cosmic rays	Lecture-cum- discussion, Demonstration	on operational amplifier problems
	3	Elementary particles-	3	To understand	Lecture-cum-	Formative

	introduction-particles and		Elementary	discussion,	assessment
	antiparticles-antimatter-the		particles	Demonstration	
	fundamental interaction				
4	elementary particle quantum	3	To construct the	Lecture-cum-	
	numbers-conservation laws and		quark model	discussion,	
	symmetry-the quark model			Demonstration	

CO-Course Outcome; CL-Cognitive Level; R- Remember; U- Understand; Ap-Apply;

An-Analyze; C - Create.

Course Instructors: Dr. C.Nirmala Louis & Dr. V.Shally

HOLY CROSS COLLEGE (Autonomous), Nagercoil-629004

B.Sc. Physics

Semester: VI

Name of the Course: Nanophysics: Elective- III (b)

Subject Code : PC2065

Hours /Week	Credits	Total hours	Marks
5	4	75	100

Learning Objectives

- 1. To gain knowledge on synthesis and characterization of nanomaterials.
- 2. To understand the advancements and applications of nanostructures.

Course Outcome

COs	Upon completion of this course, students will be able to:	PSO addressed	CL
CO - 1	infer the history of nanotechnology and explain the synthesis of nanomaterials.	PSO - 1	U
CO - 2	interpret quantum well, quantum wires and quantum dots.	PSO - 5	Е
CO - 3	explain the carbon nanotubes and its applications.	PSO - 6	Е
CO - 4	discuss the applications of nanotechnology in various fields.	PSO - 4	С

Modules

Total contact hours: 90 (Including lectures, assignment and tests)

Unit	Section	Topics	Lecture Hours	Learning outcomes	Pedagogy	Assessment/Eval uation			
Ι	Nanomaterials								
	1	History of	3	То	Lecture				
		Nanotechnology		understand	Discussion				
		- Background -		the	with PPT				

[Concentual		hadronorm	Illustration]
		Conceptual		backgroun	Illustration	
		origins -		d and		
		Experimental		importanc		
		advances -		e of nano		
		Nanostructures				
	2	Nanomaterials -	3	To be able	Lecture	Evaluation
		Synthesis of		to	discussion	through: Online
		oxide		differentia		quiz,
		nanoparticles-		te the		1 /
		Sol-gel		synthesis		Formative
		processing -		methods in		assessment I
		Synthesis of		nanomater		
		semiconductor				
				ial		
		nanoparticles		preparatio		
				n		
	3	Arrested	3	To be able	PPT	
		precipitation -		to	Illustration	
		Synthesis of		understand		
		metallic		the		
		nanoparticles		synthesis		
				of metallic		
				nanopartic		
				les		
	4	Sonochemical	3	To learn	Lecture	
		reduction		about the	discussion	
		process -		chemical		
		Electrochemical		and bio		
		deposition		synthesis		
		method -		of		
		Biosynthesis of		nanopartic		
		nanoparticles		les		
Π	Quantum	Hetero structure		105		
	1	Super lattice -	3	То	PPT and	
	1	Preparation of		understand	group	Evaluation
		Quantum		the	Discussion	through: Online
		nanostructure -		concept	D15Cu351011	quiz,
		Quantum well		-		-
		lasers		quantum well		Short questions Descriptive
	2	Quantum cascade	3	To be able	Lecture	answers
	L	laser -	5		Discussion	Formative
		Application -		to synthesize		
		Quantum wire -		synthesize	with PPT	assessment I
		production of		nanowires	Illustration	
		nanowires				
	3	Structure of	3	To able to	PPT	
		nanowires - Use		learn the	Illustration	
					musuation	
		of nanowires -		applicatio		

				C		
		Quantum dot -		ns of		
		Application of		quantum		
		Quantum dots		dots		
	4	Quantum dot	3	To know	Lecture	
		information		the various	Discussion	
		storage -		applicatio	with PPT	
		Quantum dot		ns of	Illustration	
		infrared photo			musuation	
		detectors -		quantum		
		Quantum dot		dots		
		lasers				
III	Carbon N	Nanotubes				
	1	Discovery of	3	То	Lecture	Evaluation
	1	Nanotubes -	5	-		
		Carbon		understand	discussion	Evaluation
				the CNTs		through: Online
		Allotropes -		and its		quiz,
		Diamond -		types		Short questions
		Graphite - Carbon				Descriptive
		Nanotubes		<u> </u>	.	answers
	2	Types of carbon	3	To be able	Lecture	Formative
		Nanotubes-		to	Discussion	assessment I/II
		Single walled		distinguish	with PPT	assessment 1/11
		carbon nanotubes		different	Illustration	
		- Multiwalled		types of		
		carbon nanotube -		CNTs		
		Fullerite - Torus -		CIVIS		
		Nanobuds				
	3	Graphene sheet to	3	To be able	Lecture	
		a single walled		to study	discussion	
		nanotube -		the		
		Electronic		structure		
		structure of		of CNTs		
		Carbon		OI CIVIS		
		Nanotubes				
	4	Synthesis of	3	То	PPT and	
		Carbon		understand	group	
				the	Discussion	
		Nanotube -		different	Discussion	
		Electric Arc				
		Discharge		synthesis		
		method - Laser		methods in		
		method.		CNT		
		methou.		production		
IV	Magneto	Electronics				
1 1				То	Looture	Evoluction through
	1	Nanocrystalline 3 soft material -	•		Lecture	Evaluation through:
				understand	Discussio	Online quiz,
		Permanent		the	n with	Problem solving
		magnet		fundament	PPT	short questions
		material		als of	Illustratio	Descriptive
	L	1 1				T T

				magnetic	n	answers
				nanomater		Formative
				ials		assessment II
	2	Theoretical	3	То	Lecture	
		background -		understand	discussion	
		Super		the		
		paramagnetism		principle		
		- Coulomb		behind the		
		blockade		superpara		
	2		2	magnetism	DDT	
	3		3	To be able	PPT	
				to mention	Illustratio	
				the	n	
		Quantum		importanc		
		cellular		e of		
		Automata-		nanomech		
		Spintronics		anics		
	4	Giant magneto	3	То	Lecture	
		resistance		understand	Discussio	
		(GMR) - Types		the	n with	
		of GMR.		concept	PPT	
				giant	Illustratio	
				magnetore	n	
				sistance	11	
V	Annlicati	on of Nanotechnolo		sistance		
v				To be able	PPT	Evaluation through
	1		3	to analyze		Evaluation through:
				the	Illustratio	Online quiz,
				environme	n	Problem solving
				ntal		short questions
				problems		Descriptive
				and find		answers
		Chemistry and		the		Formative
		Environment -		solutions		assessment II
		Energy		using		
		applications of		nanotechn		
		nanotechnology		ology		
	2	Information and	3	To be able	Lecture	
		Communication		to apply	Discussio	
		- Heavy		nanotechn	n with	
		Industry –		ology in	PPT	
		Consumer		communic	Illustratio	
		goods		ation		
				auon	n	
	3	Nanomedicine -	3	To learn	Lecture	
		Medical		the	discussion	
	1		1			
		application of		applicatio		

	Nanotechnology - Biomarkers and Bioimaging		ns of nanopartic les in Medicine		
4	Targeted drug delivery - Nanorobots.	3	To learn the applicatio ns of nanopartic les in medical field	PPT Illustratio n	

PO- Program outcome; LO – Learning outcome; Cognitive Level R – Remember; U – Understand; Ap- Apply, An- Analyze; E-Evaluate; C- Create

Staff-in charge: Dr. A. Lesly Fathima & Dr. S. Sonia